日韩AV

Yun Myung Oh, Publications

Manuscripts submitted or in preparation
 

  1. Oh, Y. M. The development of rectifying submanifolds. Submitted.
  2. Garcia, D.G., & Oh, Y. M. Involute/evolute of a rectifying curve in 3D-Minkowski spaces. In preparation.
  3. Oh, Y. M., & Suceava, B. The spread of the shape operator and submersion invariant. In preparation.
  4. Park, J., & Oh, Y. M. Involute & evolute of rectifying space curves. In preparation.
  5. Oh, Y. M. Riemannian Submersion and Lagrangian isometric immersion II. In preparation.
  6. Oh, Y. M. Riemannian Submersion and theta-slant isometric immersion. In preparation.

Refereed papers

  1. Navarro, A.J.R., & Oh, Y.M. 2024. Extending natural mates in Euclidean 3-space and applications to Bertrand pairs. International Electronic Journal of Geometry.
  2. Garcia-Roblero, D.G., & Oh, Y.M. 2023. On determining the equation of a Salkowski curve satisfying tau/kappa=1/s, The PUMP Journal of Undergraduate Research, 6:346-353.
  3. Oh, Y. M. 2020. The development of rectifying submanifolds. Contemporary Mathematics, 756:187-193.
  4. Van der Veken, J, Carriazo, A., Dimitric, I, Oh, Y. M., Suceva, G. D., & Vrancken, L. 2020. Reflection on some research work of Bang-Yen Chen. Contemporary Mathematics, 756:1-12.
  5.  Krzywoń, Ł., & Oh, Y. M. 2020. Time-like rectifying curves in Minkowski space R1,3The Pi Mu Epsilon Journal, 15(2): 99-105.
  6. Logan, J., & Oh, Y.M. 2017. Characterization of rectifying and sphere curves in R³. American Journal of Undergraduate Research, 14(2):91-94.
  7. Chen, B. Y., & Oh, Y. M. 2017. Classification of rectifying space-like submanifolds in pseudo-Euclidian spaces. International Electronic Journal of Geometry, 10(1): 86-95.
  8. Suceava, B., Carriazo, A., Oh, Y. M., & Van der Veken, J., eds. 2016. Recent advances in the geometry of submanifolds, dedicated to the memory of Franki Dillen (1963-2013). Contemporary Mathematics, 674.
  9. Seo, Y. L., & Oh, Y. M. 2015. A curve satisfying   with constant American Journal of Undergraduate Research 12(2):57-62. 
  10. Oh, Y. M. 2013. Riemannian Submersions and Lagrangian Isometric Immersion 1. International Electronic Journal of Geometry, 6(2):14-18.
  11. Oh, Y. M. 2009. A construction of Lagrangian submanifolds of complex Euclidean spaces using Legendre curves. Kodai Math Journal 32:521-529.
  12. Oh, Y. M. and Kang, Joon H. 2005. Lagangian H-umbilical submanifolds in quaternion Euclidean spaces. Tsukuba J. of Mathematics, 29(1) .
  13. Oh, Y. M. and Kang, Joon H. 2004. The explicit representation of flat Lagrangian H-umbilical submanifolds in quaternion Euclidean spaces. Mathematical Journal of Toyama University 27:101-110.
  14. Bang, K.S., Kang, J. H., and Oh, Y. M. 2004. Uniqueness of coexistence state with small perturbation. Far East J. Math. Sci 14(1):27-42.
  15. Kang, J.H., Lee, J. H., and Oh, Y. M. 2004. The existence, nonexistence and uniqueness of global positive coexistence of a nonlinear elliptic biological interacting model Kangweon-Kyungki Math. Jour. 12(1):77-90.
  16. Kang, J.H. and Oh, Y. M. 2004. The existence and uniquness of a positive solution of an elliptic system. Journal of Partial Differential Equations 17(1):29-48.
  17. Kang, J. H. and Oh, Y. M. 2002. Uniqueness of coexistence state of general competition model for several species. Kyungpook Math. Journal 42(2):391-398.
  18. Kang, J.H., and Oh, Y. M. 2002. A sufficient condition for the uniqueness of positive steady state to a reaction diffusion system. Journal of Korean Math. Soc. 39(3):377-385.
  19. Oh, Y. M. 2002. Explicit construction of Lagrangian isometric immersion of a real space form  M^n(c) into a complex space form N^(n)(4c), Math. Proc. Camb. Phil. Soc., 132(1).
  20. Oh, Y. M. 1992. On the intersection form of 4-manifolds, Master Thesis, Ewha Women's University.