

FIGURE 1. Acros of Y of Y of Y of Y of Y of Y of Y the six designated habitats in relation to the observation point.

$\begin{array}{ccccccccc}\n\textbf{F} & \textbf{I} & & & \textbf{F} & & \textbf{U} & & \textbf{Y} & \textbf{Y} & \textbf{M} & \textbf{S} & \textbf{I} & & & \textbf{W} \end{array}$

446 PHILLIPS, DAMANIA, HAYWARD, HENSON, LOGAN

$\begin{array}{ccccc} \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$ PHIS M_{\bullet} I FYW FES G

 $\begin{array}{c} \n\mathbf{r} \\
\mathbf{r} \\
\mathbf{r} \\
\mathbf{r}\n\end{array}$ $\begin{array}{ccc} \n\mathbf{r} \\
\mathbf{r} \\
\mathbf{r}\n\end{array}$ $\begin{array}{ccc} \n\mathbf{r} \\
\mathbf{r} \\
\mathbf{r}\n\end{array}$ $i6^-6$ **q** r **q** r **f** r **r** E r $r = r$ 5

$$
i6 \frac{ex}{6} \frac{ex}{6} \frac{1}{1} = i
$$

6. Estimating transition probabilities p*ij* **from flow rates** *ij* **.** r , T $\frac{1}{2}$ was estimated from $\frac{1}{2}$ \mathbf{r} data under the assumption that its entries remained constant \mathbf{r} each bin. This gave rise to 16 constant matrix $\mathbf{r}_\mathbf{c}$ which were designated which were designated which were designated with which were designated with $\mathbf{r}_\mathbf{c}$ $\frac{1}{1-\frac{1}{2}}$, $\frac{16}{16}$, $\frac{16}{16}$, $\frac{16}{16}$, $\frac{16}{16}$, $\frac{16}{16}$, $\frac{16}{16}$ we computed in the following way: a. Δ be a small Δ be a small interval in Δ guid in Δ guid in Δ $\begin{array}{ccc} \mathbf{r} & \mathbf{r} & \Delta & \mathbf{i} \end{array}$ \mathbf{r} bird in habitat will not depart to habitat will not depend to \mathbf{r} . $x - \Delta - i \Delta$. δ and probability that a gull in $\frac{1}{2}$ is $\frac{1}{2}$ in $\frac{1}{2}$ is $\frac{1}{2}$ in $\frac{1}{2}$ $\sum_{i=1}^{\infty}$ *i* Δ . $\sum_{i=1}^{\infty}$ **i** $\sum_{i=1}^{\infty}$ is dependent in $\sum_{i=1}^{\infty}$ is dep $\frac{6}{i=1}$ *i* Δ . α assuming that α time units α time units α is an interval time units α independent event, the probability of not departing habitat during $\sum_{i=1}^n$ is $\sum_{i=1}^n$ if $\sum_{i=1}^n$ and $\sum_{i=1}^n$ if $\sum_{i=1}^n$ is $\sum_{i=1}^n$ if $\sum_{i=1}^n$ $-$ **6 i**₌₁ **i** Δ *h***/ t**_{*i*}</sup> Δ is vanishingly small, the probability of \mathbb{R} in the probability of not departing of not departing of \mathbb{R} in the probability of \mathbb{R} in the probability of \mathbb{R} in the probability of \mathbb{R} in the p \mathbf{r}

$\begin{array}{ccccccccc}\n\textbf{F} & \textbf{I} & & & \textbf{F} & & \textbf{U} & & \textbf{Y} & \textbf{Y} & \textbf{M} \textbf{F} & \textbf{S} & \textbf{I} & & & \frac{\textbf{S}}{\textbf{S}}\textbf{3}\n\end{array}$

82 B $\sqrt{6}$ 2 6 c 33⁶ 6 6

 $\clubsuit 6$ PHIS M_{\bullet} I PIYW PES G

EEE ES

 \blacksquare 1 78, Aggressive Communication by \blacksquare . Part vinteractions of Territory Residents with a Remotely Controlled, Locomotory Model, ■ 66, 223-251.

A_{nd} \blacksquare 1999, Evergreen Pacific Tide Guide 1₉, Every Europe Publ. $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$

1 7, Hybridization and Reproductive Performance in Gulls of the \blacksquare \blacks

A. $. 2002$, The Population Response to Environmental Noise: Population Size, Variance and Correlation in an Experimental System, A. **71**, 320–332.

2001, Noisy Clockwork[,] Time Series Analysis
Animals, 293, 638–643. of Population Fluctuations in Animals,

.. 1 85, An Introduction to Habitat Selection in Birds, Habitat Selection in Birds $(\ldots, \ldots, \Lambda)$ R.F. Costantino, J.M. Cushing, B. Dennis and R.A. Desharnais [1995], Exper-

imentally Induced Transitions in the Dynamic Behavior of Insect Populations, $375, 227 - 230.$

 $R.\blacksquare$, $R.\blacksquare$, $R.\blacksquare$, $R.\blacksquare$ Dynamics in an Insect Population, 275, 38 -3 1.

F. Concrete and Seasonal Activities of a Post-
in Southeastern Ontario, 24, 164–172. Breeding Population of Gulls in Southeastern Ontario, $J.$ Cushing, R.F. Costantino, B.F. Costantino, B.A. Desharmais and S.M. Henson S . R.A. Desharmais and S.M. Henson

1 8, Nonlinear Population Dynamics Models, Experiments, and Data, \ldots $. 194, 1 - .$

 $J.$ Cushing, R.F. Costantino, B.F. Costantino, B.A. Desharmais and S.M. Henson \mathcal{A} $[2003],$ Chaos in Ecology: Experimental Nonlinear Dynamics, Academic Press, San Free $\mathbf{D} = \frac{1}{2} \mathbf{A}$.

S. R. P. Damanics in Glaucous-Winged Gulls (Communisty Additation and J.L. Habitation and J.L. Habitation and J.
R. A. Habitation and J.L. Hayward, D.L. Hayward, Indiana Barangard, Indiana Barangard, 1999, 1999, 1999, 1999 Patch Occupancy Dynamics in Glaucous-Winged Gulls (\bullet \bullet \bullet \bullet \bullet \bullet) \bullet A Continuous-Time Model, \bullet \bullet \bullet 18, 46 -4 8. Continuous-Time Model, **Natural American Continuous**

 $B = \frac{1}{2}$, $A.1$, $B = \frac{1}{2}$, $B = \frac{1}{2}$, $B = \frac{1}{2}$, $B = \frac{1}{2}$, $C = \frac{1}{2}$ 2001 , Estimating Chaos and Complex Dynamics in an Insect Population, $\ddot{\cdot}$. **71**, 277–303.

. I all 80, Heat Exchange Influence on Foraging Behavior in Flocks, 61, 30–36. $61, 30 - 36.$

R.H. Drent [1967], Functional Aspects of Incubation in the Herring Gull (argentatus Pont. **Pont.** 17, 1–32.

R.M. Evans and R.M. Evans are proportional at a Black-Billed Gull Colony: Implications for the Information Center Hypothesis, Aux 99, 24-30.

 \blacksquare Fussmann, S.P. Ellen, S.P. Shertzer and N.G. Hairston [2000], Crossing the Hopf Bifurcation in a Live Predator-Prey System, 290, 1358–1360. \blacksquare
 \blacksquare \blacks riodicities in the Numbers and Activities of Herring Gulls \bullet Larus and activities of Herring Gulls \bullet Colony, **120**, 322-328. L. ■ Galusha and Recognize Their Own Young? An Experimental Test, $\sqrt{\bullet}$. A in 10, 75–7. **J.G. Galusha and S.A. Hanging and J.L. Hayward and J.L. Hayward Colony and S.A. Hayward Eagle Activity at a Gull Colony and** Seal Rookery on Protection Island, Washington, Natural 1945, 23–25. \blacksquare \blacksquare and \blacksquare Part **IV: Experiments on Visual Communication, 62**, 222–235. , I. G¨otmark, Anderson and M. Anderson [1986], Flock-Feeding of Fish Schools Increases Individual Success in Gulls, $\begin{bmatrix} 1 & 86 & 1 & 66 \\ 319 & 58 & -5 & 1. \end{bmatrix}$
Am. 94, 375. A
Gulls by Bald Eagles in Washington, J.L. Hayward, W.H. Stone and J.F. Stone and J.F. Aggressive Communication by \blacksquare \blacksquare . Part W. Orientation and Sequences of Behavior, \blacksquare **62**, 236 276. J.L. Hayward, S.M. Henson, C.J. Logan, C.R. Parris, M.W. Meyer and B. Dennis [2005], Predicting Numbers of Hauled-Out Harbour Seals: A Mathematical Model, \mathbf{A} , **42**, 108-117.

S.M. Henson, R.F. Costantino, M . C.A. Desharmais, B. Dennis and B. Dennis and B. Dennis and B. Dennis and B. A.A. 2001 , Lattice E ects Observed in Chaotic Dynamics of Experimental Populations, 294, 602-605.

S.M. Henson, J.L. Hayward, C.M. Burden, C.J. Logan and J.L. Logan and J.L. Logan and J.L. Logan and J.L. Logan 2004 , Predicting Dynamics of Aggregate Loafing Behavior in Glaucous-Winged Gulls Gulls (2004, Habitat Patch Occupancy Dynamics of Glaucous-Winged Gulls (\bullet \bullet) A Discrete-Time Model, $\left(\begin{array}{c} 2004, & \text{Poiscrete-Time Model}, \\ \text{Poiscrete-Time Model}, & \text{Poiscrete-Time Model} \end{array}\right)$ ment, Andrews University, MI. . The Cost of Reproduction in the Glaucous-Winged Gull, **74**, 458 467. 1 88, Age-Specific Patterns of Reproduction in the Glaucous-Winged Gull: Increased E ort with Age, $\overline{69}$, 1454-1465. 1 88 , Fledging Success of Experimentally Enlarged Broods of the ucous-Winged Gull, ■ . 100, 476–482. Glaucous-Winged Gull, .. 188, Population Dynamics of the Glaucous-Winged Gull, J. Wildlife Manage. **52**, 763 770. E. Since \sim Simple Stochastic and E. Thomas [2001], Testing a Simple Stochastic Model for the Dynamics of Waterfowl Aggregations, ² 128, 608-617. \blacksquare \blacksquare 1975, Aggressive Communication by \blacksquare \blacksquare \blacksquare Part \blacksquare Description of the Displays Related to Territorial Protection, **8**65, 181–208. \blacksquare , \blacksquare Part **Visual Communication,** \blacksquare **34**, 42-54. \blacksquare , \blacksquare , \blacksquare , \blacksquare $\bullet \bullet \bullet \bullet \bullet$ Part Sound Communication, \bullet 34, 2-41.

 \mathbb{P} 1 8, Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants, \bullet A \bullet , \bullet \bullet , A.