Io nal of Diffe ence E a ion and Air lica ion ,  $2002 \; \mathrm{Vol.} \; 8 \; (12), \; pp. \; 1119-1120$ 



## AP dcavF cdB HEL a

J.M. CUSHING<sup>a,\*</sup> and SHANDELLE M. HENSON<sup>b</sup>

For > 1 and K > 0 the difference equation

$$x_{+1} = \frac{K}{K + (-1)x} x$$
,  $= 0, 1, 2, ...$ 

has a unique positive equilibrium K and all solutions with  $x_0 > 0$  approach K as  $\to \infty$ . This equation (known as the Beverton–Holt equation) arises in applications to population dynamics, and in that context K is the "carrying capacity" and is the "inherent growth rate". A modification of this equation that arises in the study of populations living in a periodically (seasonally) fluctuating environment replaces the constant carrying capacity K by a periodic sequence K of positive carrying capacities.

Thus, we have a periodically forced Beverton-Holt equation

$$x_{+1} = \frac{K}{K + (-1)x} x \tag{1}$$

in which the sequence  $K_0,K_1,\ldots$  of positive numbers is periodic with a base period  $\wp$ , i.e.  $K_{+\wp}=K>0$  for all  $\geq 0$  and a (minimal) integer  $\wp\geq 1$ . Keep the inherent growth rate >1 constant and consider the following assertions.

- (a) Equation (1) has a positive  $\mu$ -periodic solution x > 0, and it is globally attracting for  $x_0 > 0$ .
- (b) If p > 2, the strict inequality  $a(\cdot) < a(K)$  holds. Here a denotes the average of a periodic cycle, e.g.

$$a(x) = \frac{1}{i} \sum_{j=0}^{i} x^{j-1}$$

These assertions are of ecological interest because they imply a fluctuating habitat is deleterious to a population in the sense that the average population size, in the long run, is less in a periodically oscillating habitat than it is in a constant habitat with the same average.

As pointed out above, (a) holds when p = 1 (i.e. K = K is a constant). However, when p = 1 assertion (b) is false, since in that case k = K and hence k = 1 (i.e. k = K). On the other hand, it is known that both (a) and (b) are true for k = 1 [1]. We conjecture (a) and (b) are in fact true for all periods k = 1 [1]. However, it remains an open problem to prove (or disprove) these assertions for k = 1.

## References

[1] Cushing, J.M. and Shandelle M., Henson, Global dynamics of some periodically forced, monotone difference equations, *Jo nal of Diffe ence E a ion and Applica ion* 7 (2001) 859-872

|            | Copyright of Journal of Difference Equations & Applications is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listsery without the copyright holder's express written permission. However, users |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u> 80</u> | -                                                                                                                                                                                                                                                                    |
|            |                                                                                                                                                                                                                                                                      |
|            | -                                                                                                                                                                                                                                                                    |
|            |                                                                                                                                                                                                                                                                      |
| <u> </u>   | •                                                                                                                                                                                                                                                                    |
| •          |                                                                                                                                                                                                                                                                      |
| ۰          |                                                                                                                                                                                                                                                                      |
|            |                                                                                                                                                                                                                                                                      |