


In this paper, we develop two examples in population
ecology of situations in which the LE and the SLE are
discordant. The first example is theoretical: we give a
simple paper-and-pencil derivation of the LE and the
SLE for a stochastic version of the logistic model of
population growth. The second example is empirical:
we describe experimental results in which a model fitted
to population data provided estimates of the LE and
the SLE with widely disparate values. The second ex-
ample involves the larva-pupa-adult (LPA) model for
the flour beetle Tribolium. The two examples provide
insight into how a system with a negative LE in the
absence of noise can have a positive SLE when noise is
introduced. The phenomenon can occur even when the



Jacobian matrices, similar to multiplying a Leslie pro-
jection matrix repeatedly to get the eigenvalue repre-
senting the long-term population growth rate; see
Dennis et al. 2001 for details).

In the stochastic setting, we consider f(Nt) to repre-
sent some underlying deterministic tendency influencing
the vector of state variables Nt. The state variables in
addition are assumed to be influenced by stochastic
forces (noise). Many types of stochastic models have
the structure of a noise model superimposed on an
underlying deterministic model (the skeleton). Exam-
ples are the continuous time diffusion processes (Karlin
and Taylor 1981, Gardiner 1983), and discrete time
stochastic difference equations (Tong 1990).

Like the LE, the definition of the SLE revolves
around the Jacobian matrix (3). If an average like (4) or
(5) is calculated by following a stochastic model trajec-
tory through time, the quantity may or may not con-
verge, depending on the properties of the model. If the
stochastic model is ergodic, meaning that it settles
down into a long-run statistical equilibrium (or more
technically, that neighborhoods of the state space are
revisited in finite time with probability 1), then long-run
averages such as (4) or (5) usually converge. An ergodic
stochastic model typically has a long-run probability
distribution, known as a stationary distribution, that is
independent of time and initial conditions. The limit
involved in (4) or (5) is equivalent to the expected value
of the local LE with respect to the stationary distribu-
tion of the stochastic model.

To summarize, the LE and the SLE concepts both
start from the idea that trajectories originating near a
point N tend to converge to or diverge. The dominant
eigenvalue in the linearization of the model near N
provides a measure of the rate of convergence or diver-
gence (if N is an equilibrium point of a deterministic
system, then that eigenvalue provides the familiar test
of the local stability of the equilibrium; May 1974a).
The LE and the SLE arise as averages by following a
model trajectory through time and calculating the re-
sulting eigenvalues at all states visited by the system. If
a deterministic system has an attractor, then the averag-
ing process used to construct the LE will converge to
the average on the attractor. The SLE average, how-
ever, converges to the average with respect to the
stationary distribution of the stochastic model. Usually,
a deterministic attractor is a set of dimension much
reduced from the dimension of the state space. By
contrast, a stochastic model with a stationary distribu-
tion typically produces trajectories that visit and revisit
all portions of the state space, even though the underly-
ing skeleton has a reduced dimension attractor. Thus,
in a stochastic model, the LE of the skeleton and the
SLE are substantially different concepts. The differ-
ences are noteworthy in the following two examples.

Continuous-time logistic model

The following analytical demonstration illustrates how
the SLE can be positive even when the underlying
deterministic model has a point equilibrium that is
stable for all positive initial population sizes.

(a) Deterministic model

A continuous-time model of the growth of a single
population is

dNt

dt
= f(Nt) (6)

where f(.) is a function specifying any dependence of
the population growth rate, dNt/dt, on population
abundance, Nt. A well-known example is the logistic
model, in which the function f(.) is quadratic (Gotelli
1995, Hastings 1997):

dNt

dt
=aNt−bNt

2 (7)

When the constants a and b are both positive, the
logistic model (7) has a positive equilibrium at N�=a/
b that is stable and is the attractor for all positive initial
population sizes. The origin under such circumstances
is an unstable equilibrium.

The Jacobian of the logistic model for any particular
population size N is the derivative of f(.) evaluated at
N :

f �(N)=a−2bN (8)

In one dimension, the Jacobian is its own eigenvalue.
This eigenvalue (8) separates the state space of abun-
dances into two regions. The eigenvalue is positive for
values of N lying below one half of the stable equi-
librium (N�a/(2b)=N�/2). Two initial conditions in
this lower abundance region, separated by a small
distance, would have model trajectories that diverge
from each other for a short time period. Indeed, the
logistic model trajectories initiated at low abundances
resemble exponential growth. In other words, the re-
gion of abundance near zero in the logistic model has
the property of temporary sensitivity to initial condi-
tions. Of course, if enough time elapses, the distance
between any two trajectories in this low region will
eventually decrease as the trajectories approach N�.

The eigenvalue (8) is negative for values of N greater
than N�/2. All trajectories initiated at positive abun-
dances eventually enter this high abundance region
containing the stable point equilibrium, N�. In this
region, nearby trajectories converge, rather than di-
verge. Trajectories in the high abundance region do not
have the property of sensitivity to initial conditions.
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The LE for the model is the long-run average value
of the eigenvalue on the attractor. In this case, the LE
is the Jacobian evaluated at the stable point equi-
librium, N�:

�= f �(N�)= f �(a/b)= −a (9)

The negative sign of � confirms the absence of deter-
ministic chaos in this model. It is well-known, in fact,
that a one-dimensional autonomous differential equa-
tion cannot have chaotic solutions (Drazin 1992).

(b) Stochastic model

The following continuous-time stochastic version of the
logistic model has been frequently studied (Dennis and
Patil 1984). Let Nt be a diffusion process (Karlin and
Taylor 1981, Gardiner 1983) with infinitesimal mean
function m(n)=an−bn2 and infinitesimal variance
function �(n)=�2n2 (�2�0). This is identical to as-
suming that Nt is governed by an Ito stochastic differ-
ential equation of the form

dNt= (aNt−bNt
2)dt+�NtdWt, (10)

where dWt has a normal distribution with mean 0 and
variance dt (Weiner process increment). The model has

been proposed to represent a population growing logis-
tically but subjected to environmental noise fluctuations
(Leigh 1968, Dennis and Patil 1984). The parameter �2

scales the intensity of the noise fluctuations.
The statistical distribution for Nt governed by (10)

converges to a long-term stationary distribution,
provided the noise intensity is not too large. The sta-
tionary distribution is a gamma distribution (Dennis
and Patil 1984), with probability density function given
by

p(n)=
��

�(�)
n�−1e−�n, (11)

in which �= (2a/�2)−1 and �=2b/�2 (Fig. 1). The
condition for the existence of the stationary distribution
is ��0 (or �2�2a). The stationary gamma model has
had extraordinary success in describing equilibrial dy-
namics of single species populations (Costantino and
Desharnais 1981, Dennis and Costantino 1988, Deshar-
nais et al. 1990, Kemp and Dennis 1993).

For the stochastic logistic model (10), the SLE is the
Jacobian (8) averaged over the long-run stationary
distribution. Noting that the expected value of a
gamma variate is (Rice 1995)

E(N)=
�

0

�

np(n) dn=�/� (12)

Fig. 1. Solid curves: three gamma probability distributions of equilibrium population abundance. The gamma density curves are
given by p(n)=��n�−1e−�n/�(�), where �= (2a/�2)—1, �=2b/�2, and n is population size, and are plotted using a=0.06,
b=0.0006, and three different values of �2. The mound-shaped curve corresponds to �2=0.02 (�=5). The decreasing J-shaped
curve intersecting the vertical axis at 0.02 is the exponential distribution, a special case of the gamma distribution corresponding
to �2=0.06 (�=1.0). The decreasing J-shaped curve with a pole at zero corresponds to �2=0.08 (�=0.5). Vertical dashed line:
deterministic equilibrium abundance level (carrying capacity) N�=a/b=100. Vertical solid line: abundance level N�/2=50
below which the Jacobian of the deterministic logistic model is positive. The J-shaped gamma distribution with a pole produces
a positive stochastic Lyapunov exponent, while the stochastic Lyapunov exponent for the mound-shaped gamma distribution is
negative. The exponential distribution case produces a stochastic Lyapunov exponent of zero.
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we have

�s=E [ f �(N)]=E(a−2bN)=a−2bE(N)=�2−a
(13)

If �2�a, the SLE is positive, indicating overall sensi-
tivity, on average, to initial conditions. Appending the
condition for existence of the stationary distribution,
we find the conditions for a positive SLE to be a�
�2�2a.

Thus, the average sensitivity to initial conditions in
the stochastic logistic model (10) is determined by the
noise intensity. If �2�a, the noise intensity is low
compared to the strength of the deterministic forces
(a= �−a �= �� � is the magnitude of the eigenvalue mea-
suring the stability of the deterministic point equi-
librium). The LE and SLE are in concert: neither
indicate chaos (Fig. 1). If a��2�2a, the SLE is
positive and the LE remains negative. The two mea-
sures are then not accord. What happens is that the
l268 571ee



The experiment in question consisted of manipulat-
ing adult recruitment so as to fix the parameter cpa at a
set of seven values: 0, 0.05, 0.10, 0.25, 0.35, 0.5, 1.0.
Three replicate cultures were maintained at each treat-
ment value of cpa; adult mortality in these cultures was
manipulated so as to fix the parameter �a at 0.96. Three
unmanipulated control cultures were maintained as
well. The set of cpa values was selected because the LPA
model, fi



stantial gains in understanding population systems
(Scudo and Ziegler 1978, Kingsland 1985). The news
that simple deterministic models could display exotic,
seemingly random behavior (May 1974b) was electrify-
ing, precisely because real population time series often
seemed devoid of unambiguous signals. The hypothesis
of chaos in ecological populations originally empha-
sized low-dimensional, non-linear, deterministic forces.
According to the hypothesis, if a few non-linear forces
such as predation or overcompensating density depen-
dence could be correctly identified, then the seemingly
stochastic fluctuations of population abundances might
be largely explained in terms of simple deterministic
models. May (1976) wrote:

‘‘Quite apart from their intrinsic mathematical interest, the
above results raise very awkward biological questions. They
show that simple and fully deterministic models, in which
all biological parameters are exactly known, can nonethe-
less (if the non-linearities are sufficiently severe) lead to
population dynamics which are in effect indistinguishable
from the sample function of a random process. Apparently
chaotic population fluctuations need not necessarily be due
to random environmental fluctuations, or sampling errors,
but may reflect the workings of some deterministic, but
strongly density dependent, population model.’’

The deterministic, low-dimensional formulations of
population models were fully in keeping with the scien-
tific spirit and excitement attending the concept of
chaos, as exemplified by May’





The understanding and use of ‘‘mechanistic’’ non-
linear stochastic models for analyzing time series data
was greatly enhanced by (Tong 1990). In this approach,
a non-linear dynamic system model (the skeleton) is
used as the core of a statistical time series model, by
adding noise to the model in some fashion. Statistical
theory then prescribes methods of estimating model
parameters (fitting the model to data), testing different
model structures, and evaluating the results. Thus, if
hypothetical mechanisms explaining a population’s fluc-
tuations could be identified and formulated into a
deterministic model, then the model can potentially be
connected to time series data, evaluated, and used for
predictions. Noteworthy are the cautions that Tong
sounded about the complexities of interpreting the SLE
in such models (Yao and Tong 1994, Tong 1996).

With the data requirements reduced to ecologically
feasible levels, claims of chaos in ecological systems
followed. In the early studies, chaos was defined as
sensitivity to initial conditions, as indicated by a posi-
tive SLE. Turchin and Taylor (1992) used a parametric
flexible-surface regression method (response surface
methodology) to estimate the skeleton and SLE.
Turchin (1993) and Ellner and Turchin (1995), using
the parametric and non-parametric frameworks, docu-
mented examples of apparently chaotic time series of
ecological populations, as indicated by positive SLE
estimates. These SLE estimates were not accompanied
by estimates of the standard errors (Falck et al. 1995a,
b). Moreover, estimates of the LE’s of the underlying
skeletons were not reported. Thus, we do not know
whether the apparent chaos was due to the influence of
underlying low-dimensional chaotic attractors or to
stochastic visitation of transient areas in phase space
where trajectories tend to diverge.

More recently, Turchin and Ellner (2000) undertook
a double-pronged analysis of time series from
Fennoscandian vole populations. They combined
model-free time series analysis using kernel regression
with the fitting of mechanistic predator-prey models. A
fascinating latitudinal gradient in stability was docu-
mented, with the northernmost populations experienc-
ing ‘‘quasi-chaos’’ (mechanistic model) or ‘‘weak
chaos’’ (phenomenological model). Their analyses rep-
resent one of the most sophisticated investigations of
time series from field populations published to date.

The ‘‘global Lyapunov exponent’’ that Turchin and
Ellner (2000) reported is what we here have termed the
SLE. The chaos they document is that of ‘‘exogenous
noise amplified by sensitive dependence on initial condi-
tions.’’ We suggest that their conclusions about dynam-
ics would be more complete and interpretable if they
had reported point estimates and confidence intervals
for the LE, along with estimates and confidence sets for
the types of dynamic behaviors in the model skeletons.

We point out also that the local LE (see paragraph
after (3)) can sometimes aid in the interpretation of

dynamic behavior and deserves more attention (Bailey
et al. 1997, Grenfell et al. 2002). Because its value varies
across phase space, the local LE can help chart regions
of sensitivity to initial conditions. Cushing et al. (2001),
for instance, produced a map of a chaotic attractor in
the LPA model, color-coded according to values of the
local LE. The map of the ‘‘hot’’ and ‘‘cold’’ spots of the
attractor served as the basis for the design of an
experiment to test the control of chaos with tiny pertur-
bations (Desharnais et al. 2001). As with the LE and
SLE, the local LE can be defined differently for
stochastic systems, but the interpretation of the differ-
ences seems more straightforward.

Concluding remarks

Defining chaos in terms of a positive SLE confounds
both stochasticity and complex non-linear dynamics. It
classifies noisy systems as chaotic as well as systems
under the influence of low-dimensional, non-linear
forces. We have shown that non-linear models with
simple deterministic dynamics, such as a stable point
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