Ma e a ca M de f A e d c a B e G G a c - ed G

Ja e L. Ha ad,¹* S a de e M. He ,² J C. Ba ,³ a d S ee a L. L ²

¹Biology Department, Andrews University, Berrien Springs, Michigan 49104
²Department of Mathematics, Andrews University, Berrien Springs, Michigan 49104
³Physical Therapy Department, Andrews University, Berrien Springs, Michigan 49104

ABSTRACT De el me flcm acii \hat{r} c-ciali e a \hat{d} . I bi \hat{d} , h \hat{r} de el me lea \hat{d} dif-fe f ci \hat{r} f hi dlimb a d f elimb. The eme-ge ce f alki g a d i g \hat{a} e diffe c cm le behai a e ^S l eek^S af e ha chig ide^S a i e e^S ig ca^S e^S d i a imal de el me . We mea^Sed he dia h seal le g h a d mid haf diame e f he e i g b e (h me s, l a, a d ca me aca s) a d h ee leg b e (fem , ibi a s, a d a me a- $a^{(5)}$) f 79 j e ile (age 0 42 da s) a d 13 ad l gla c 5- i ged g lP (Larus glaucescens), a 5 emi ec cial^s ecie^s. F m a^s ie f i e al e a i e ma hema ical m deP, e ⁵ed i f mai - he eic cieia de e mi e he be⁵ m del⁶) f le g h a d diame e f each b e a⁵ a f ci f age; ha P, e de e mi ed he m del⁶) ha b ai ed he be⁵ ade ff be ee he mi imi ed ⁵ m f⁵ a ed e⁵ id aP a d he mbe f a ame e⁵ ⁵ ed he m del. The Ja ⁵ chek a d H lli g III m deP be⁵ de⁵ c ibed b e g h, i h a lea⁵ e f he⁵ e m deP ieldi g a R² 0.94 f e e dime ⁵ i e ce a⁵ me a a⁵ ⁵ diame e (R² = 0.87). We ⁵ ed he be⁵ g h m deP c ⁵ c acc a e all me ic c m a P ⁵ f he b e⁵. Ea l ma imal ab⁵ l e g h a e⁵ cha ac e i e he h me ⁵, fem , a d a⁵ me a a⁵ ⁵, b e⁵ ha a⁵⁵ me ad l - e⁵ -f c i ⁵ ela i el ea l d i g j e ile de el cal m de₱, e ^sed if mai -he eic cieia f ci ⁵ elaiel eal d igj e ile de el me.Legbelegh?ehibimeaidble??? ai ed ela i e g h ha i g b e le g h. Wi g b e diame e³ a e i i iall ⁵ malle ha leg b e diamee⁵, alh ghhi² ela i ⁵hi i² e e⁵ed b edgig. Wigb e a d he fem a ach ad l le g h b edgigb c i e iceavei diamee av edgig; he ibi a^s a d a^s me a a^s a ach b h ad l le g h a d diame e b edgi g. I h, he a e f b e g h i h h edgi g. I h, he a e he cha gi g beha i al eed f he de el i g ga h. J. M h l. 000:000 000, 2008. ©

dic ed b $e^{5}ie(legh diamee)iachick faget, a d K, a, b, c, > 0 a e a ame <math>e^{5}$ be e^{5} ima ed f m da a. K \dot{P} he a^{3} . m ic (ad l) b $e^{5}ie, b a, b, c$

$${}_{0}F_{1} v; z = {}_{j 0}^{\infty} \left(\frac{z^{j}}{j! - \frac{j}{k 0} v - k} - \frac{z^{2}}{2! v v - 1} - \frac{z^{3}}{3! v v - 1 v - 2} - 13 \right)$$

 $\hat{\mathbf{Y}}$ he ca'e, elaieg h a $\hat{\mathbf{e}}$ ide m e ea' able be ee -b eg h c m a $\hat{\mathbf{Y}}$ A elaieg h a e $\hat{\mathbf{Y}}$ de e mi ed b di idi g he ab' l eg h a e b he c e $\hat{\mathbf{y}}$ ie f he b e, ha $\hat{\mathbf{Y}}$ (df/dt)/f(t). The elaieg h a e $\hat{\mathbf{Y}}$ heg h a e e cm f b e, a d ha' i' f cm/da/cm, ha $\hat{\mathbf{Y}}$, 1/da. Th', if b e' ha e he' ame ab' l eg h a e, he he l ge b e ha' he' malle elaieg h a e; a d if b e' ha e he' ame elaieg h a e, he he l ge b e ha' he la ge ab' l eg h a e. The a ea de he elaieg h a e c ebe ee age 0 a d age t e e' e' he elaielegh (diamee) f he b e a age τ , a d $\hat{\mathbf{Y}}$ gi e b

 $\int_{0}^{\tau} \frac{1}{f t}$

e e⁵ ed (Fig. 4A). M e e, ela i e g h c e⁵ f he l a a d ca me aca ⁵ a e edic ed cl⁵ el e⁵ emble e a he. A⁵ imila ela i e g h a e \hat{P} edic ed f i g b e diame e⁵, al h gh he c ⁵⁵ - e ime \hat{r} la e (Fig. 4C). Am g he leg b e⁵, he fem \hat{r} edic ed be ela i el l ge d i g he ⁵ eek a d a half, a hich ime he ibi a⁵ ake⁵ he lead (Fig. 4B). The diame e f he fem \hat{r} edic ed be ela i el la ge ha ha f he ibi a⁵ d i g he ⁵ a d e half eek⁵ (Fig. 4D).

The fem \hat{r} edic ed a ach ela i e maim m le g h bef e he a⁵ me a a⁵, al h gh ela i e g h c e⁵ f he b e⁵ e⁵ emble e a he (Fig. 4B). I c a⁵, he a⁵ me aa⁵ diame e f² edic ed ⁵ g i g a ab 18 da ⁵, hile he fem diame e c i e⁵ g (Fig. 4D).

The elaieg h f he h me ⁵ diame e al a⁵ e ceed⁶ ha f le g h (Fig. 4E). Relaie g h f he l a a d ca me aca ⁵ diame e ⁷ edic ed e ceed ha f he le g h il da 16, he he⁵ i a i ⁷ e e⁵ ed (Fig. 4G,I). F he leg b e⁵, elaieg h i le g h e ceed⁶ elaieg h i diame e h gh e- edgi g de el me (Fig. 4F,H,J).

D i g ⁵ a al de el me , he ibi a^{5} ⁵ ^p edic ed g a ima el ⁵ e e ime⁵ i⁵ a al le g h (Table 1; c m a e K a d S₀), he ea⁵ he fem , a⁵ me a a⁵, a d h me ⁵ g l ab f ime⁵ hei i i ial le g h⁵. The l a a d ca me aca ⁵ g ab i e ime⁵ hei a al le g h⁵. Th⁵, he leg e e ie ce⁵ le⁵ ⁵ a al g h ha he i g. A i⁵ ec i f he K al e⁵ i Table 1⁵ h ⁵ ha he fem make⁵ ela i el le⁵ c ib i (25%) al leg le g h ha d e⁵ he h me ⁵ (36%) al iglegh. Acmař fjeileg h edici⁵/da a a d ad l da a i Fige⁵ 1 a d 2 ⁵h⁵ ha hebe² f he ig, a² ell a² he fe-

m del ($\Delta AIC =$

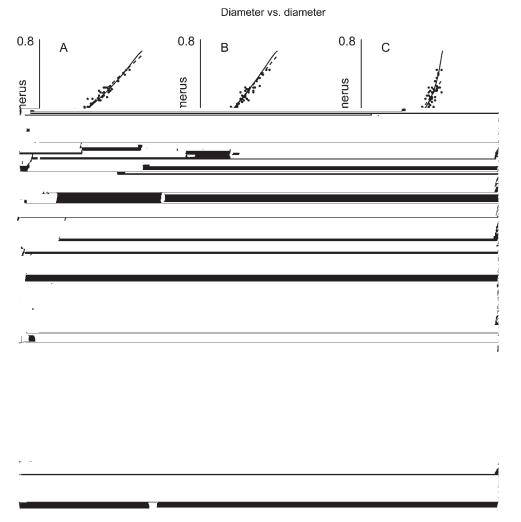


Fig. 6. All me ic ela i ⁵ f ⁵ elec ed ai ⁵ f ^b e diame e ⁵ i Larus glaucescens. See Fig e 4 f de aiP h i e e each g a h.

(m del 9), i am g he be m del f b h he le g h a d diame e f each f he^si b e^s, he l m del f hich hr r e. B h he Ja -^Schek a d H lli g III m de₽ de^Sc ibe ^Sigm idal g h, hich i le a i i ial ha e fe -e ial i ceare i ch d c e mi r a d/h e h (b e le g h) a d e i ⁵ ial g h a d calci ca i (b e diame e), f ll ed b a ha⁵ e f dimi \hat{r} hi g g h ha lead g h e mi-ai. The ma imal ab l e g h a e cc \hat{r} a a ime ha c e d i h he i ec i i f he g h c e (a , Fig. 1,2).

The i ec i i cc seal i g h f he h me s, hich ide eal s a d m scle i g h f he fem a d a⁵ me a a⁵, hich ha chlig, al h gh i ld be m ch la ge, i de eal e e⁵ iall c m ⁵ f he m e a k a d, a d able ⁵. C m a f⁵ cc⁵ elaiel lae i g h f be locid ca me aca δ , hich a e a ch ed he i- $M\delta$ i e δ i g i h \hat{P} egad \hat{P} he elaie ma a d'ec da igh feahe^s, e^s eciel, g h f i ga d leg b e le gh², e^s eciel.

eieb e ha a me ad l- e beha i al f ci ali. ela i el a l d i g j e ile de el me . Relaie diffe e ce^oib e dime ^oi^oi diffe e l^sied ga r^m e e dr c^{ss}ed b Galile i

ha becme f ci al l a edgi g. I

h, eal maimalableg hae chaac-

he'e e ee h ce (Galilei, 1638 [1914]). Fel-aieg h c e' f b e dime 'i ' ide i 'igh i g h i ela i i i ial 'i e. Thr all 'f a "fai" c m a 'f be ee a i ' b e'. If all a 'f a 1-da - ld ha chlig ceeded g a he⁵ ame ela i e a e, a i di id-

The hatchling humerus immediately functions to support the entire wing, which lies folded against the side of the body and attached to the body at a single point. GeCon this supporteCo function, as well as rapid growth of the nascent but all-important pectoralis ("ight) muscle already attached to this bone, humeral growth dominates forelimb development for the "rst 2 weeks. Beginning in the b e⁵. Chick⁵ begi alk i hi a da f ha ch-i g, he ea⁵ he⁵ igh cc⁵ ab 6 eek⁵ la e; he^g h a e⁵ h⁵ e ec he dif-fe i g l c m² ge ie⁵. N abl, b h ibi -a⁵ al a d a⁵ me a a⁵ al diame e⁵ achie e ea l achie e ad l ⁵ i e ell bef e edgi g, al h gh he c i e g i le g h. Al h gh i g b e diame e⁵ a e i i iall ⁵ malle ha leg b e diame e⁵, h⁵ ela i ⁵ hi

- De r B, M h lla d PL, Sc JM. 1991. E ima i g hadeici aamee^s fedageed^s ecie^s. Ec l M g 61:115 143.
- Di $\,$ e dahl L, K ame G. 1957. Ube g $\,$ $\beta e\,$ abha gige A de ge K e i e bei M e (Larus ridibundus. L. canus, L. argentatus, L. marinus). J O i h 1 98:282 312.
- D EH, B r bi IL. 1980. Age? eci c cha ge? i he maj bd cm e a d cal ic al e f he i g g ll chick. C d 82:398 401.
- El e KD, Pa e S. 1979. Agi g ghe i g mea $^{\circ}$ eme $^{\circ}$ fb da $^{\circ}$. Bi d Ba d 50:49 55. ghe igglP fm
- Galilei G. 1638 [1914]. Dial g e C ce i g T Ne Scie ce. Ne Y k: Macmilla .328 . T a S la ed f m he I alia ad Lai i Egliphb H. Ce ad A. de Sali.
- Gille U, Salm FV. 1995. Beg hidck hgh ma hema ical m de i h s ecial efe e ce he Ja ⁵ chek g h c e. G h De el Agi g 59:207 214.
- Gille U, Sal m FV. 1999. G h f d ck bilP. C d 101:710 713.
- Gille U, Zache F, Sal m FV. 2000. B ai , e e, a d ⁵k ll g h i emb ic gee e. C d 102:676 79.
- Gillila d SG, A k e CD. 1992. E ima i g age f g bi d
- iham liaiaemea^o e fbd^oie. A k 109:444 450. Gme B. 1825. O hea e fhef ci e e^oie f hela fhmam ali, ada e mde fdeemiig he al e f li e c e ge cie³. Phil⁵ T a ³ 🖹 S c 182:513 585.
- Hall 🖹 2000. A Ma hema ical M del f L gi di al B e h. U blr hed Mar e r Therr, C S ChřiCl-G lege, U i e⁵i f O f d. 33
- Ha $\ddot{}$ a d
 JL, Ve beek NA. 2008. Gla c $\,$ $^{\circ}-$
i ged G ll (La $\,^{\circ}$ gla ce ce ⁵). I : P le A, edi . Bi d⁵ f N h Ame ica O li e. I haca, NY: C ell Lab a f O i h l g. re ie ed f m h ://b a.bi d^a.c ell.ed ≯ ecie³/059.
- He SM, De PB, Ha ad JL, C Shi g JM, Gal Sha JG. 2007. P edic i g he d amic^o f a imal beha i i eld la i ⁵. A im Beha 74:103 110.
- H lli g CS. 1959. S me cha ac e r ic f im le e f edai ad aa³ir³m. Ca E m l 91:385 398.
- Jame Vei ch E, B h ES. 1954. Beha i a d Life Hr he Gla c 5-Wi ged G ll. Walla Walla C llege P blica i 5

f he De a me f Bilgical Scie ce a d Bilgical Sai , N . 12. Ja [°] chek A. 1957. Da[°] eak i [°] ki e r[°] che G dge[°] e

- d ^Sei e Be ieh ge m Wach m - d E ag ge e . S a VP ch 10:25 37.
- f he ^{\$}-called ^{\$}kele ^{\$} m Kima M. 1965. E al a i mehd, em l_ed i i e^o iga i ^o fg hall me_i
- bi d[°]. Z M h l Ok l g Tie e 55:250 258. Li e e BC, S e ₩W. 1992. M h me ic c m a r f[°]kele ⁵ f he e⁵ e g ebe c m le Aechmophorus f he Uied Sae a d Caada. C d 94:668 679.
- Me ie K. 1959. Die All me ie de V gel geb. Z WPS Z l 161:444 482.
- M e L, de Mage ie E, Ca a e J, de Kic Le A, C b J. 2005. Relai ^shi be ee b eg h ae ad he hick-e^{ss} f calci ed ca ilage i he l g b e^s f he Gall a -^se ae (A e^s). J A a 206:445 452.
- OP⁵ DM, NeP LS. 1975. The Nelde -Mead⁵ im le d effci mi imi ai. Tech me ic² 17:45 51. ce-
- Pa⁵ ⁵ J. 1975. A⁵ ch ⁵ ha chi g a d chick m ali i he he i g g ll, Larus argentatus. C d 78:481 492.
- Peek JM, De P B, He he T. 2002. P edic i g
- e d^a f m le dee . J Wildlife Ma age 66:729 736. P e³⁵ WH, Fla e BP, Te k P k SA, Ve e li g WT. 1986. N me ical reci e⁵: The A f Scie i c C m i g. Cam-b idge: Camb idge U i e⁵i. P e⁵. 848.
- P ice JS, O aj bi BO, **K** ⁵⁵ ell **K**GG. 1994. The cell bi l g f b e g h. E J Cli N 48:S131 S149.
- Sal e DW, La ki GJ. 1990. Im ac f c ⁵hi feedi g cl ch a d hid-egg ^{\$}ie i gla c ^{\$}- i ged g lP. A im Beha 39:1149 1162.
- Shimi K, I a'e K. 1981. U if ml mi im m a ia ce bia'ed e' ima i i l g mal a d ela ed d' ib i ⁵. C mm S a A The a d Me h d' 10:1127 1147. Sch l ZM. 1951. G h i he gla c ⁵- i ged g ll. Pa 1.
- M ele 32:35 42.
- Sch l ZM. 1986. O he Wi g² f he Wild Wi d, Occa² Pa #21. Belli gham, WA: Ce e f Paci c N h e² S die².
- SmihJE, Diem KL. 1972. G hadde el me f g