292 ANDREWS UNIVERSITY

Worship Attendance. 1 row in cir rung m

Final Exams. , $(1, 2, 3, 4, 5) \in \mathbb{C}$ where $(1, 2, 3, 5) \in \mathbb{C}$ is a start of the set $(1, 2, 3, 5) \in \mathbb{C}$ is a start of the set $(1, 3, 5) \in \mathbb{C}$ is a start of (1, 3, 5) \in \mathbb{C} is a start of (

Residency Requirements.

Time Limits on Degrees. At the set of the s

Transfer Credit. $\mathcal{A} = (\mathcal{A} + \mathcal{A}) + (\mathcal{A}) + (\mathcal{A} + \mathcal{A$

PROGRAMS

 $\begin{array}{c} & M_{\tau,n} = \left\{ \begin{array}{c} & m_{\tau,n} \\ &$

 $M_{rad} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{$

 $\frac{1}{1} + \frac{1}{1} + \frac{1$

MDiv: Master of Divinity

+ Director

 $M_{res} (s, c) = m_{res} (s_{1})^{r} (s_$

 $ct = \frac{1}{1} + \frac{1}{2} +$

A man for market and the second of the secon

 $\mathcal{A} = \{1, \dots, n\} = \{1, \dots, n\}$

a charly a property and a second s

 $\mathbf{x} \rightarrow \mathbf{y} \quad \mathbf{x} \rightarrow \mathbf{x} \rightarrow$

 $\begin{array}{c} \mathbf{x} \\ \mathbf$

ADMISSION TO THE PROGRAM

 $M P = m_{1} + m_{2} + m_{2} + m_{2} + m_{2} + m_{3} + m_{4} + m_{4}$

martin, MP Mater Lard and

 $= \frac{1}{\sqrt{1+1}} = \frac{$

ACADEMIC POLICIES

Summer Course Load..., [... (... (... (...) (..

Workshop Credit Limit and Grading Pattern M_{rel} (1) M_{rel}

Independent Study Restrictions. (1, 2, 2, 3, 4) (1, 3, 4) (1, 3, 4) (1, 3, 4) (1, 3, 4) (1, 3, 4)

Re-enrolling in the MDiv Program. $A = \frac{1}{2} + \frac{1}{2$

Transferring Credits to the MDiv Program.

 $\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}$

Student Assessment.

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

Church History

7–11

entren moory ¹ - Land - Aller Construction (10), <u>a</u> Haller are approximately Construction (10), <u>a</u> Haller are approximately particular and the second second

Landa allembar, see al

AREAS OF EMPHASIS

al all al to a growing the second and the second an $M_{1} = \frac{1}{2} M_{1} + \frac{1}$ Alex Ace, I write is share makes in the Chi د و ۲۰۱۵ د. ایمان ۱۹۹۹ و ۲۰۰۱ از ۲۰۰۱ را دو میراد.

CHRISTIAN MINISTRY

 m_1 , m_1 , m_2 , m_1 , m_2 , m_2 , m_1 , m_2 , m_2 , m_2 , m_2 , m_1 , m_2 ,

CHURCH HISTORY

, me a la, at a 17 1, 11, - Far 1+ 10 - - 13-

NEW TESTAMENT

OLD TESTAMENT

THEOLOGY AND CHRISTIAN PHILOSOPHY

1, * ~ ~ *, 13, . ·

WORLD MISSION

THESIS OPTION

 $\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$ 1 ----

 $\begin{array}{c} 1^{n} \left[1 \right] \left[1 \right]$

. • ا به جامعه میکند و اور در به مدیر اور دارد. اور I a solution and a second of the second and a second as a second ، در به ۲۸۰ ماد بار بار <mark>ماد م</mark>ه ماد و ممانه ماد ماد مرام Non in the start start in the s e, the setting of the term the set of the model of the set of the It , a the start of a start of the start of the the start of the start

finan 1 ray 200 and 1 for 1 radia tay 1 and ray 1 a المحصلا بالراب فالربيان والأرداد المرابع بالالالال · I arts a logo of the son in the second and the se ه ما مرابع المرابع الله من مربع المرابع المربع ا